Technical Manual of the Ceylan-Traces Layer

\\\ N \\ \ \ | N

_\‘\ 3 N N
. .\\\1 \ ﬁ: \ k\\
RIS

.\ \. «\!u:m N

Organisation: Copyright (C) 2010-2024 Olivier Boudeville
Contact: about (dash) traces (at) esperide (dot) com
Creation date: Sunday, August 15, 2010

Lastly updated: Sunday, January 14, 2024

Version: 1.0.21

Status: Stable

Dedication: Users and maintainers of the Traces layer.

Abstract: The role of the Traces layer (part of the Ceylan project)
is to provide Erlang applications with advanced trace services,
so that the user can efficiently log, browse and search through
detailed runtime messages that may be emitted concurrently
(i.e. in a parallel, distributed way) by all kinds of processes.
We present here a short overview of these services, to introduce
them to newcomers. The next level of information is either to
browse the Traces API documentation or simply to read the
corresponding source files, which are intensely commented and
generally straightforward.

The latest version of this documentation is to be found at the official Traces
website (http://traces.esperide.org).
This documentation is also mirrored here.

http://traces.esperide.org/
https://github.com/Olivier-Boudeville/Ceylan
api-doc/index.html
https://github.com/Olivier-Boudeville/Ceylan-Traces
http://traces.esperide.org
http://traces.esperide.org
https://olivier-boudeville.github.io/Ceylan-Traces/

Table of Contents

Overview
Trace Severities
Trace Content

Trace Emission

From member methods.
From constructors
Trace Categorisation
Activation / Desactivation
Switching from Basic Console Traces .
The Traceable Interface.

Trace Ordering

Trace Output Generation

Trace Format Type
Trace Rotation

Trace Supervision & Browsing

Trace Implementation

General Mode of Operation
Trace Emitters
Timestamps
Multiple Inheritance

Lowering the Trace-Induced Overhead

LogMX-related Hints
Internal Trace Format

Supported Platforms
Licence

Current Stable Version & Download

Using Cutting-Edge GIT
Using OTP-Related Conventions . . .
Using Rebar3
Build-time Conventions
Compile-time Conventions
Runtime Conventions

Testing Traces

Troubleshooting

Lost Traces
Duplicated Traces
Lost LogMX Settings

12

13
13
13
13
13
14
14
14

15

15

15
15
16
16
16
17
17

17

Troubleshooting
Lost Traces
Duplicated Traces
Lost LogMX Settings
Java Error When Launching LogMX

Support
Please React!

Ending Word

19
19
19
19
19

20

20

20

Overview

This layer is in charge of providing Erlang programs with the means of emitting,
collecting, storing and browsing applicative traces (i.e. logs - not related in any
way to Erlang tracing).

This means that both user-originating traces (that your code emits thanks
the Traces API) and standard Erlang logs are routed and centralised in a single
view whose purpose is to help monitoring your application(s) as a whole.

For that, various types of components have been designed and implemented,
such as a trace aggregator, emitter, listener, supervisor, bridge, etc.

They collectively constitute the Traces layer, whose only prerequisites (be-
sides Erlang itself, of course) are the WOOPER layer (for object-oriented prim-
itives) and the Myriad layer (for many lower-level services; itself a prerequisite
of WOOPER).

Traces can be readily built and run on most Unices (including of course
GNU/Linux) and on Windows. The project repository is located here.

The main purpose of this Traces layer is thus to provide adequate traces
(i.e. advanced logs) for distributed systems (a rather critical feature in order
to debug in these difficult contexts), and to ease their study and browsing. A
few backends are available for that, from the direct reading of basic (text) trace
files to considerably more user-friendly solutions, such as the generation of PDF
reports or the use of our more advanced trace format, which can be read notably
by commercial tools such as LogMX!.

Finally, an effort has been made to lessen the runtime impact of this service
when it is enabled, and to pretty remove it as a whole (hence with no runtime
overhead) when disabled (through flexible build options).

Trace Severities

Traces now relies on the same conventions as the ones of the newer standard
logging facility in Erlang/OTP, logger, which itself obeys the Syslog protocol,
as defined in RFC 5424.

There are eight built-in levels for trace channels, of increasing severity:

Trace Severity Mapped Pri-
ority
debug 7
info 6
notice 5
warning 4
error 3
critical 2

...continued on next page

IThe Ceylan-Traces layer defined a trace format of its own, supported by our Java-based
parser for LogMX. For what it is worth, LogMX is the only non-free, commercial tool on
which we rely, as we find it quite convenient. Devising an interface to any other log browsing
tool of interest is certainly a rather reasonable option. Pull requests welcome!

http://erlang.org
https://erlang.org/doc/man/erlang.html#trace-3
http://traces.esperide.org/
http://wooper.esperide.org/
http://myriad.esperide.org/
https://github.com/Olivier-Boudeville/Ceylan-Traces
http://www.logmx.com/
https://erlang.org/doc/man/logger.html
https://www.ietf.org/rfc/rfc5424.txt

Trace Severity Mapped Pri-
ority

alert 1

emergency 0

Starting from notice? onward (thus included), these severities are consid-
ered as significant enough to never be disabled (thus their messages will be
created and sent to the trace aggregator in all cases).

Moreover the severities that are "error-like" (starting from warning onward)
will be sent synchronously to the trace aggregator, and echoed on the console as
well, to ensure none is lost. Doing so is certainly a bit more resource-demanding,
yet such traces shall denote exceptional conditions anyway.

There is also an additional trace severity, void, that designates traces that
shall be muted in all cases. Its purpose is to provide another means of mut-
ing/unmuting some traces, instead of commenting out/uncommenting said traces,
or relying, thanks to cond_utils, on conditionally-compiled code.

2A good practice is to only send few notice messages (a fixed/bounded number of them).
For example, one of such messages may be sent once a singleton instance is fully constructed
(avoiding one notice message per call of a given request, or one per instance - should there
may be many of them).

Trace Content

Note

This section is not of interest for Traces users, it is only useful if wanting
to integrate other tools or simply to have a look under the hood.

The traces corresponding to an execution are represented as an wallclock-
time ordered stream of trace messages.

These traces are possibly exchanged over the network or stored in a file,
whose extension is conventionally .traces.

For example the traces for a test named my_foobar_test are typically stored
in a my_foobar_test.traces file, generated by the trace aggregator in the
directory from which the corresponding test was launched.

Following data is associated to a given trace:

1. technical identifier of the emitter, as a string (e.g. <9097.51.0> for
the PID of a distributed Erlang process)

2. name of the emitter (e.g. "Instance tracker")

3. dotted categorization of the emitter (e.g. "Core.Tracker.Instances");
here for example the emitter is an element of the service in charge of the
instances, which itself belongs to the tracker services, which themselves
belong to the (even more general) core services

4. application-level timestamp (e.g. operation count, relative tick, abso-
lute timestep, or any complex, application-specific timestamp, etc.), pos-
sibly none, or undefined if not applicable (e.g. a simulation that would
not be started yet)

5. wall-clock timestamp, in the "Year/Month/Day Hour:Minute:Second"
format (e.g. "2016/6/10 15:43:31"); this is an emitter-side timestamp
(hence not related to the wallclock time known of the trace aggregator)

6. emitter location, as a string (e.g. the name of the Erlang node, possibly
including the name of the application use case, of the user and of the host;
e.g. my_foobar_test_john@hurricane.org)

7. dotted categorization of the trace message itself (e.g. MyApp.MyTopic.MyTheme)

8. severity of the trace message (mapped to an integer level, as discussed
above)

9. the trace message itself, an arbitrary text of arbitrary length

Trace Emission
The following header is to be included so that an Erlang process can send traces:
-include("class_TraceEmitter.hrl").

or, better, in an OTP-compliant fashion:

-include_lib("traces/include/class_TraceEmitter.hrl").

This process can be a standalone module (e.g. a test or an application
launcher, see trace _management test.erl) or, more frequently, it might corre-
spond to a WOOPER (active or passive) instance, in which case it shall inherit,
directly or not, from class_TraceEmitter (see class TestTraceEmitter.erl for
a complete example of it).

Traces can also be emitted thanks to Myriad’s trace bridge. This is espe-
cially useful when developing lower-level libraries that can depend on Myriad,
but may introduce extra runtime dependencies such as WOOPER and Traces
only optionally. Using that bridge, the traces will by default go through Myr-
iad’s low level trace utils, unless Traces is available, in which case its default
trace aggregator will be used.

Such a bridge is also useful whenever spawning processes that have not direct
trace emitter state of their own, yet may at least in some cases send traces; the
bridge allows them to use a designated trace emitter as a relay.

From member methods

Then sending-primitives can be used, such as:
7info("Hello world!")
or:
?info_fmt ("The value "B is the answer.", [MyValue])

Many API variations exist (see class TraceEmitter.hrl), to account for the
various trace content, contexts, etc., but 7S (Message) and 7S_fmt (MessageFormat,MessageValues),
for S corresponding to a trace severity (e.g. S being notice), are by far the most
frequently used.

From constructors

Note that for example ?debug(Message) is a macro that (if Traces is enabled)
expands (literally) to:

class_TraceEmitter:send(debug,State,Message)

As a result, the availability of a State variable in the scope of this macro
is expected. Moreover, this WOOPER state variable shall be the one of a
class_TraceEmitter instance (either directly or, more probably, through in-
heritance).

This is not a problem in the most common case, when using traces in member
methods (as by design they should be offering such a State), yet in constructors
the initial state (i.e. the State variable directly fed to the construct operator
of this class) is generally not the one of a trace emitter already (it is a blank
state).

As a result, an instance will not be able to send traces until the completion of
its own class_TraceEmitter constructor, and then it shall rely on that resulting
state (for example named TraceState). Sending a trace of severity S from that

https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/test/trace_management_test.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/test/class_TestTraceEmitter.erl
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/trace_bridge.erl
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/trace_utils.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/include/class_TraceEmitter.hrl

point should be done using a send_S macro (e.g. ?send_debug(TraceState,Message))
- so that an appropriate state is used.

An example of some class Foobar inheriting directly from TraceEmitter will
be clearer:

-module(class_Foobar) .

construct(State,TraceEmitterName) ->
TraceState = class_TraceEmitter:construct(State,TraceEmitterName),
% Cannot use here 7info("Hello!), as it would use ’State’,
% which is not a trace emitter yet! So:
?send_info(TraceState,"Hello!"),
[...]
FinalState.

Trace Categorisation

In addition to browsing the produced traces per emitter, origin, theme, wallclock
or applicative timestamps, etc. it is often useful to be able to sort them per
emitter categorisation, such a categorisation allowing to encompass multiple
emitter instances of multiple emitter types.

Categories are arbitrary, and are to be nested from the most general ones to
the least (a bit like directories), knowing that subcategories are to be delimited
by a dot character, like in: Art.Painting.Hopper. As a consequence, any string
can account for a category, keeping in mind dots have a specific meaning.

Hierarchical categorisation allows to select more easily a scope of interest for
the traces to be browsed.

For example, should birds, cats and dogs be involved, introducing following
emitter categorisations might be of help:

e Animals
e Animals.Birds
e Animals.Cats

e Animals.Dogs

If wanting all traces sent by all cats to be gathered in the Animals.Cats
trace category, one shall introduce in class_Cat following define before the
aforementioned class_TraceEmitter.hrl include:

-define(trace_emitter_categorization,"Animals.Cats").

and use it in the constructor like the following example, where class_Cat
inherits directly from class_Creature® - supposingly itself a child class of
class_TraceEmitter:

3We chose on purpose, with class_Creature, a classname that differs from class_Animal,
to better illustrate that trace categories can be freely specified.

-module(class_Cat) .

-define(trace_emitter_categorization,"Animals.Cats").
-include("class_TraceEmitter.hrl").

construct (State,TraceEmitterName) ->

TraceState = class_Creature:construct(State,
7trace_categorize(TraceEmitterName)),

% Cannot use 7warning("Hello!), as it would use ’State’,
% which is not a trace emitter yet! So:
?send_warning(TraceState,"Cat on the loose!"),
[...]
FinalState.

Then all traces sent by all cats will be automatically registered with this
trace emitter category.

The purpose of the trace_categorize macro used in the above example is
to register the trace categorisation defined through the inheritance tree so that,
right from the start, the most precise category is used for all emitted traces*.

Sometimes a very large number of trace emitters exist, to the point that
selecting them becomes tedious. One workaround is to sort them according to
their prefixes (first characters), for an easier browsing thereof.

For example, instead of having, under a "characters" trace categorization
, "John-Paul", "John-Mark", "John-Eric", etc., a "characters.John-" trace
categorization could be preferred so that it groups all the characters named
accordingly.

This can be done by replacing the use of the trace_categorize/1 macro
(defined in class_TraceEmitter.hrl) above with a pair whose first element
is the actual emitter name and second element is its original categorization
augmented of a prefix obtained from its name (here this pair would simply be
{"John-Mark", "characters.John-"}).

Refer to class_TraceEmitter:subcategorize/1 for an example where an
additional grouping level is introduced, based on the first character of the trace
emitter name. Then if a specified emitter name would have been "some .prefix.foobar",
this function ensures that "some.prefix.f.foobar" is used, resulting in an al-
phabetical dispatching of emitter names (and this emitter being sorted among
all the ones whose name starts with f).

Activation / Desactivation

The trace macros used above can be fully toggled at build-time, on a per-module
basis (if disabled, they incur zero runtime overhead, and no source change is
required).

4Otherwise, should the various constructors involved declare their own categorisation
(which is the general case) and send traces, creating a cat instance would result in having these
traces sorted under different emitter categories (e.g. the one declared by class_Creature, then
by class_Cat, etc.). Tracking the messages emitted by a given instance would be made more
difficult than needed, using this macro allows to have them gathered all in the most precise
category from the start.

See the ENABLE_TRACES make variable in GNUmakevars.inc for that, and do
not forget to recompile all classes and modules that shall observe this newer
setting.

Note that an error-like trace severity will not be impacted by this setting,
as such traces shall remain always available (never muted).

Doing so incurs a very low runtime overhead anyway (supposing of course
that sending these failure-related messages happens rather infrequently), as the
cost of a mostly idle trace aggregator (which is spawned in all cases) is mostly
negligible - knowing that runtime resource consumption happens only when/if
emitting actual traces.

Switching from Basic Console Traces

In some cases, it may be convenient to have first one’s lower-level, debugging
traces be directly output on the console.

Then, once the most basic bugs are fixed (e.g. the program is not crashing
anymore), the full power of this Traces layer can be best used, by switching
the initial basic traces to the more advanced traces presented here.

To output (basic) console traces, one may use the trace utils module of the
Myriad layer. For example:

trace_utils:debug_fmt ("Hello world #7B",[2])

Then switching to the more advanced traces discussed here is just a matter
of replacing, for a given trace type T (e.g. debug), trace_utils:T with ?T, like
in:

?debug_fmt ("Hello world #~B",[2])

(with no further change in the trace parameters).

Yet now, as already mentioned, there is a better way of doing so (not re-
quiring trace primitives to be changed once specified), through the use of the
trace bridge module - which is also provided by the Myriad layer - instead.

It allows all Erlang code, including the one of lower-level libraries, to rely ul-
timately either on basic traces (i.e. the ones offered by Myriad in trace_utils)
or on more advanced ones (typically the ones discussed here, offered by Traces
- or any other respecting the same conventions) transparently (i.e. with no
further change, once the emitter process is registered).

See trace bridging test.erl for an example of use thereof.

The Traceable Interface

This interface has been introduced so that other interfaces can depend on it
rather than having their instances necessarily be a full-blown TraceEmitter.

In practice this interface, defined in class_Traceable.erl and class _Traceable.hrl,
offers the same basic macros for trace sending as class_TraceEmitter, yet can
be used by any WOOPER instance - be it a trace emitter or not, and, in this
last case, whether or not having a trace bridge set; the relevant trace emission
option is transparently used whenever having to emit an actual trace.

10

https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/trace_utils.erl
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/trace_bridge.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/test/trace_bridging_test.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/src/class_Traceable.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/include/class_Traceable.hrl

Trace Ordering

It should be noted that the ordering of the reported traces is the one seen by the
trace aggregator, based on their receiving order by this process (not for example
based on any sending order of the various emitters involved - there is hardly
any distributed global time available anyway).

So, due to network and emitter latencies, it may happen (rather infrequently)
that in a distributed setting a trace message associated to a cause ends up
being listed, among the registered traces, after a trace message associated to a
consequence thereof’; nevertheless each trace includes a wall-clock timestamp
corresponding to its sending (hence expressed according to the local time of its
trace emitter).

Trace Output Generation

Trace Format Type

Traces may be browsed thanks to either of the following supervision solutions
(see class_TraceSupervisor.erl):

e text_traces, itself available in two variations:

— text_only if wanting to have traces be directly written to disk as
pure, yet human-readable, text

— pdf, if wanting to read finally the traces in a generated PDF file
(hence the actual text includes a relevant mark-up, and as such is
less readable directly before a PDF is generated out of it)

e advanced_traces, for smarter log tools such as LogMX (the default), as
discussed below

Trace Rotation

Note also that trace rotation can be enabled: when requested, it is performed
(in a synchronous or asynchronous manner, see the rotateTraceFile/1 oneway
and the rotateTraceFileSync/1 request of the trace aggregator) uncondition-
ally or based on a threshold in the size of the trace file (the default; see also the
setMinimumTraceFileSizeForRotation/2 oneway).

Such trace rotation is typically meant to be triggered by a scheduler, on a
regular basis (doing so is more relevant than for example checking a criterion at
each trace addition).

If the current trace file is my_file.traces, its rotated version will be an XZ
archive named for examplemy_file.traces.8.2021-1-17-at-22h-14m-00s.xz
(the count, here 8, allows to keep track of a series of rotation archives, while the
timestamp corresponds to the time at which the log rotation was done), located
in the same directory.

5A total, reproducible order on the distributed traces could be implemented, yet its runtime
synchronisation cost would be sufficiently high to have a far larger impact onto the executions
that this trace system is to instrument than the current system (and such an impact would
of course not be desirable).

11

Trace Supervision & Browsing

Indeed the tool that generally we use for trace browsing is LogMX (the only
tool that we use that is not free software, as we find it convenient), which we
integrated:

B LogMX - (Rmp/i7aces ample ort] 5o

Ele Edt Fiter Tools Bookmarks Window Help

> e

e YB3 2 \ T T
.

eminers [y 3
e L[] * [0 [mestams hread | emiter |_tove Vessage Waldodk Time | Emiter Locatin
I [

s e ey S|
TR e
i—_ﬁ—_hﬂ*
7 31683182402<0.340% ActorTheme. INFO /2008 04:41.25 trace otherg org Execution Topic Events.
i s i | S SIS SIS

@ GENSER<0390 AdseThamaDEBUG Lastmessage s s ebug one. OHONIDBOHNZS trace eher@mbosorg ExecubonTopcEvents

o
Status: o new ey for 253 @ | [] [o

art Please stand by fo auhentcate

14

File loaded: 8 entries, format: Ceylan trace files, size: 143 KB, date: Sun Dec 05 00.0020 CET 2020, encoding: UTF-8 [N searchi 2 entry selscted

We implemented a Java-based parser of our trace format for LogMX (see

CeylanTraceParser. java):
P

[# Genersl | - Display |~ parsers | - Managers | o Levels | 5 Levels redirections | () Alerts | < Netwark | 7 Encoding |
Current level redirections:

Active | Parser I Source Level | Destination Level
[/ Ceylan Trace Parser (using Java class "ceylan parser.CeylanTraceParser) 0 EMERGENCY
[V Ceylan Trace Parser (using Java class "ceylan.parser.CeylanTraceParser) 1 ALERT
[Ceylan Trace Parser (using Java class "ceylan parser.CeylanTraceParser') 2 CRITICAL
[v] Ceylan Trace Parser (using Java class "ceylan parser.CeylanTraceParser”) 3 ERROR
[¥l Ceylan Trace Parser (using Java class "ceylan parser.CeylanTraceParser”) 4 WARNING
[V Ceylan Trace Parser (using Java class "ceylan parser.CeylanTraceParser) 5 NOTICE
[/ Ceylan Trace Parser (using Java class "ceylan parser.CeylanTraceParser) 6 INFO
[V Ceylan Trace Parser (using Java class "ceylan.parser.CeylanTraceParser') 7 DEBUG

Traces can be browsed with this tool:

e live (i.e. during the execution of the program), either from its start or

upon connection to the instrumented program whilst it is already running®
(see class_Tracelistener.erl and trace_listening_test.erl)

e post mortem (i.e. after the program terminated for any reason, based
on the trace file that it left)

The trace supervision solution can be switched at compile time (see the
TraceType defined in traces/include/traces.hrl); the Traces layer shall
then be rebuilt.

6In which case the trace supervisor will first receive, transactionally, a compressed version
of all past traces; then all new ones will be sent to this new listener, resulting in no trace
being possibly lost.

12

QIQIBE'“\

http://www.logmx.com/

Trace Implementation

General Mode of Operation

All processes are able to emit traces, either by using standalone trace send-
ing primitives (mostly for plain Erlang processes), or by inheriting from the
TraceEmitter class, in the (general) case of WOOPER-based processes.

In the vast majority of cases, all these emitters send their traces to a single
trace aggregator, in charge of collecting them and storing them on-disk (for most
uses, their memory footprint would be quickly too large for RAM), according
to an adequate trace format.

This trace format can be parsed by various trace supervisors, the most pop-
ular being LogMX.

Various measures have been taken in order to reduce the overhead induced
by the overall trace system.

Notably normal traces (as opposed to error-like ones) are sent in a "fire and
forget", non-blocking manner (thanks to oneways, which are not specifically
acknowledged). The number of messages exchanged is thus reduced, at the
cost of a lesser synchronization of the traces (i.e. there is no strong guarantee
that the traces will be ultimately recorded and displayed in the order of their
emission in wallclock-time, as they will be directly and sequentially stored in
their actual order of receiving by the trace aggregator’, an order that depends
itself on the potentially varied network latencies experienced from the potential
multiple sources to the trace aggregator).

Trace Emitters

Any class deriving, directly or not, from class_TraceEmitter, is, once con-
structed as a trace emitter, able to send traces.

Timestamps

When sending a trace, an emitter relies on its trace_timestamp attribute, and
sends a (binarised) string representation thereof (obtained thanks to the ~p
quantifier of io:format/2). This allows the trace subsystem to support all
kinds of application-specific timestamps (e.g. integers, floats, tuples, strings,
etc.).

Multiple Inheritance

Often, in an application, many classes derive - directly or not - from class_TraceEmitter.
The constructor of this class is designed to perform its initialisation exactly once

(as opposed to as many times as a given class inherits from class_TraceEmitter),

the first time it is called (leading typically to the most relevant emitter state in

terms of name, categorization, etc.).

"For example, if both the trace aggregator and a process B are running on the same host,
and if a process A, running on another host, emits a trace then sends a message to B so that
B sends in turn a trace, then the trace from B might in some cases be received - and thus
be listed - by the aggregator before the trace for A (it depends on the network congestion,
relative scheduling of processes, etc.).

13

http://wooper.esperide.org
http://www.logmx.com

Refer to this WOOPER section about diamond-shaped inheritance for fur-
ther details.

Lowering the Trace-Induced Overhead

In addition to the general efficiency measures already taken, an (optional) "pre-
formatted" mode has been introduced in order to further lower the cost induced
by the processing of traces; this mode can be freely used in parallel to the
normal, "legacy" mode, in the same program.

At the expense of supporting only our "advanced" trace supervision type
(as opposed to the "text" one typically useful for PDF generation), this mode
strives to:

e reduce the volume of data sent for each trace (from a richer tuple per trace
to a single, compact binary)

e increase overall concurrency by, as much as possible, offsetting the load
from the trace aggregator (which by design is a singleton) to the many
trace emitters

Using this mode is transparent, and, in case of heavy trace sending, a sig-
nificant decrease in resource usage could be measured.

To enable/disable this mode, refer to the traces_are_preformatted define,
which is now set by default (see the TRACES_OPT_FLAGS variable in GNUmakevars. inc).

LogMX-related Hints

One can find here various elements in order to better integrate LogMX (e.g.
parser, configuration files, etc.).

An important setting is how much memory (RAM) is allowed for that tool
(see the MAX_MEMORY entry in startup.conf).

Internal Trace Format

(for the most curious users)

Each trace line is a raw text (hence not a binary content) made of a series
of predefined fields, separated by the pipe (1) delimiter character.

The text message included in a trace can contain any number of instances
of this field delimiter.

Example of a raw trace line (end of lines added for readability):

<0.45.0>|I am a test emitter of traces|TraceEmitter.Test|none]
2016/6/13 14:21:16|trace_management_run-paul@hurricane.foobar.org]|
MyTest.SomeCategory|6|Hello debug world!

or:

<9097.51.0>|Instance tracker|Core.Tracker.Instances]|14875|
2016/6/10 15:43:31|My_application_case-john@hurricane.foobar.org|
Execution.Uncategorized|4|Creating a new root instance tracker
whose troubleshooting mode is enabled.

14

https://wooper.esperide.org/#the-special-case-of-diamond-shaped-inheritance
https://github.com/Olivier-Boudeville/Ceylan-Traces/tree/master/conf/logmx
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/conf/logmx/startup.conf

Supported Platforms

Traces can be readily built and run on most Unices (including of course GNU /Linux)
and on Windows.
Refer to the Myriad counterpart section for more details.

Licence

Ceylan-Traces is licensed by its author (Olivier Boudeville) under a disjunc-
tive tri-license giving you the choice of one of the three following sets of free
software /open source licensing terms:

e Morzilla Public License (MPL), version 1.1 or later (very close to the for-
mer Erlang Public License, except aspects regarding Ericsson and/or the
Swedish law)

e GNU General Public License (GPL), version 3.0 or later
e GNU Lesser General Public License (LGPL), version 3.0 or later

This allows the use of the Traces code in as wide a variety of software projects
as possible, while still maintaining copyleft on this code.

Being triple-licensed means that someone (the licensee) who modifies and /or
distributes it can choose which of the available sets of licence terms he/she is
operating under.

We hope that enhancements will be back-contributed (e.g. thanks to pull
requests), so that everyone will be able to benefit from them.

Current Stable Version & Download

As mentioned, the single, direct prerequisite of Ceylan-Traces is Ceylan-WOOPER,
which implies in turn Ceylan-Myriad and Erlang.

We prefer using GNU/Linux, sticking to the latest stable release of Erlang,
and building it from sources, thanks to GNU make.

Refer to the corresponding Myriad prerequisite section for more precise
guidelines, knowing that Ceylan-Traces does not need any module with con-
ditional support such as crypto or wx.

Using Cutting-Edge GIT

This is the installation method that we use and recommend; the Traces master
branch is meant to stick to the latest stable version: we try to ensure that this
main line always stays functional (sorry for the pun). Evolutions are to take
place in feature branches and to be merged only when ready.

Once Erlang is available, it should be just a matter of executing:

$ git clone https://github.com/0livier-Boudeville/Ceylan-Myriad myriad
$ cd myriad && make all && cd ..

15

http://myriad.esperide.org/#supported-platforms
http://www.mozilla.org/MPL/MPL-1.1.html
http://www.erlang.org/EPLICENSE
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/lgpl.html
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-Myriad
http://erlang.org
http://myriad.esperide.org#prerequisites

$ git clone https://github.com/0livier-Boudeville/Ceylan-WOOPER wooper
$ cd wooper && make all && cd ..

$ git clone https://github.com/0Olivier-Boudeville/Ceylan-Traces traces
$ cd traces && make all

(for OTP compliance, using short names, such as myriad, wooper and traces,
for clones rather than long ones, such as Ceylan-Myriad, Ceylan-WOOPER and
Ceylan-Traces, is recommended)

Running a corresponding test just then boils down to:

$ cd test &% make trace_management_run CMD_LINE_OPT="--batch"

Should LogMX be installed and available in the PATH, the test may simply
become:

$ make trace_management_run

Using OTP-Related Conventions
Using Rebar3

The usual rebar3 machinery is in place and functional, so the Traces prerequi-
sites (Myriad and WOOPER) and Traces itself can be obtained simply thanks
to:

$ git clone https://github.com/0livier-Boudeville/Ceylan-Traces.git traces
$ cd traces
$ rebar3 compile

Then Traces and its tests shall be ready for a successful execution.
Note that rebar3 is an alternate way of building Traces, as one may rely
directly on our make-based system instead.

Build-time Conventions

As discussed in these sections of Myriad and WOOPER, we added the (optional)
possibility of generating a Traces OTP application out of the build tree, ready
to be integrated into an (OTP) release. For that we rely on rebar3, relx and
hex.

Unlike Myriad (which is an OTP library application), Traces is (like WOOPER)
an OTP active application, meaning the reliance on an application that can be
started /stopped (traces_app) and on a root supervisor (traces_sup); unlike
WOOPER this time - whose main server (the class manager) is a gen_server -
Traces relies on a trace aggregator that is a background server process yet that
does not implement the gen_server behaviour but the supervisor bridge one:
the trace aggregator is indeed a WOOPER instance.

As for Myriad and WOOPER, most versions of Traces used to be also pub-
lished as Hex packages, yet finally our workflow does not rely on Hex, so we
do not update the Hex packages anymore. Just drop us an email if needing a
recent one.

For more details, one may have a look at:

16

https://myriad.esperide.org
https://wooper.esperide.org
http://myriad.esperide.org/myriad.html#otp
http://wooper.esperide.org/index.html#otp
https://www.rebar3.org/
https://github.com/erlware/relx
https://hex.pm/
http://erlang.org/doc/man/supervisor_bridge.html
http://wooper.esperide.org/index.html#otp_for_instances
https://hex.pm/packages/traces

e rebar.config.template, the general rebar configuration file used when gen-
erating the Traces OTP application and release (implying the automatic
management of Myriad and WOOPER)

e rebar-for-hex.config.template, to generate a corresponding Hex package
for Traces (whose structure and conventions is quite different from the
previous OTP elements)

e rebar-for-testing.config.template, the simplest test of the previous Hex
package: an empty rebar project having for sole dependency that Hex
package

One may run make create-traces-checkout in order to create, based on
our conventions, a suitable _checkouts directory so that rebar3 can directly
take into account local, directly available (in-development) dependencies (here,
Myriad and WOOPER).

Compile-time Conventions

To see a full example of Ceylan-Traces use in an OTP context, one may refer
to the US-Common project.

This includes the us_common otp application test.erl test, a way of test-
ing a Traces-using OTP application (here, US-Common) outside of any OTP
release.

Runtime Conventions

Whether or not a graphical trace supervisor is launched depends on the batch
mode, which can be set through the is_batch key in the traces section of the
release’s sys.config file.

We found convenient to define alternatively a shell environment variable
(possibly named BATCH), and whose value can be CMD_LINE_OPT="--batch",
for an easier switch from the command-line.

Then, for example for a test module defined in foobar_test.erl, running
from the command-line make foobar_run will result in the trace supervisor
(typically LogMX) to be spawned, whereas make foobar_run $BATCH will not
(i.e. the traces will be emitted and collected as usual, but will not be specifically
supervised graphically).

Testing Traces

Once the prerequisites (Myriad and WOOPER) and Traces itself have been
secured (for that refer to either Using Cutting-Edge GIT or Using Rebar3), just
run from the root directory of Traces:

$ make test

The testing shall complete successfully (if it is not the case, see our support
section).

17

https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/conf/rebar.config.template
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/conf/rebar-for-hex.config.template
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/conf/rebar-for-testing.config.template
https://github.com/Olivier-Boudeville/us-common
https://github.com/Olivier-Boudeville/us-common/blob/master/test/us_common_otp_application_test.erl
https://myriad.esperide.org
https://wooper.esperide.org

Note

Traces is built and tested at each commit through continuous inte-
gration, and the same holds for its two prerequisites (Myriad and
WOOPER). Reciprocally this procedure applies to the projects based
on it (e.g. US-Web), so in terms of usability, confidence should be high.

Troubleshooting

Lost Traces

If having sent traces that cannot be found through the trace supervision (or that
even disappear live!), most probably that they were properly sent, collected and
stored, but that they were too numerous to be displayed.

In LogMX, this can be seen in the bottom-right status bar, where a fully-
filled red rectangle shows the percentage of the maximum number of entries
currently met: 100% most likely means that too many traces were to be displayed
for the current settings, and thus that latter traces replaced former ones.

A solution is either to send less traces, or to increase that display threshold,
either directly in to the LogMX interface (by entering an higher value on the
left of said rectangle), or in the logmx . properties configuration file, by setting
its autoRefreshEntriesLimit attribute to an higher value.

A related setting is the max memory that the (Java) configuration of LogMX
allows.

Duplicated Traces

In rather rare contexts (typically when requesting LogMX to focus on the last
entries, whereas dozens of thousands of them are added), the trace supervision
may show duplicated traces.

For example, an emitter that sent 6 traces will be marked as having sent
8 of them, and a pair of successive traces will be shown twice (first that pair,
then other traces may interleave, then the pair will be listed again), with non-
duplicated IDs (as shown in the leftmost LogMX column).

It is just an artefact due to this specific execution of LogMX though: one can
check that reading this file again, but this time as a whole (instead of live) does
not show duplicated traces anymore; indeed these traces were actually stored
by Ceylan-Traces in the *.traces file only once.

Lost LogMX Settings

LogMX will write its configuration files (notably logmx . properties) when shut-
down. So before modifying any of these files, ensure first that no LogMX in-
stance is still running (otherwise one’s changes will be overwritten).

18

https://github.com/Olivier-Boudeville/Ceylan-Traces/actions?query=workflow%3A%22Erlang+CI%22
https://github.com/Olivier-Boudeville/Ceylan-Traces/actions?query=workflow%3A%22Erlang+CI%22
https://myriad.esperide.org
https://wooper.esperide.org
https://us-web.esperide.org/

Troubleshooting

Lost Traces

If having sent traces that cannot be found through the trace supervision (or that
even disappear live!), most probably that they were properly sent, collected and
stored, but that they were too numerous to be displayed.

In LogMX, this can be seen in the bottom-right status bar, where a fully-
filled red rectangle shows the percentage of the maximum number of entries
currently met: 100% most likely means that too many traces were to be displayed
for the current settings, and thus that latter traces replaced former ones.

A solution is either to send less traces, or to increase that display threshold,
either directly in to the LogMX interface (by entering an higher value on the
left of said rectangle), or in the logmx . properties configuration file, by setting
its autoRefreshEntriesLimit attribute to an higher value.

A related setting is the max memory that the (Java) configuration of LogMX
allows.

Duplicated Traces

In rather rare contexts (typically when requesting LogMX to focus on the last
entries, whereas dozens of thousands of them are added), the trace supervision
may show duplicated traces.

For example, an emitter that sent 6 traces will be marked as having sent
8 of them, and a pair of successive traces will be shown twice (first that pair,
then other traces may interleave, then the pair will be listed again), with non-
duplicated IDs (as shown in the leftmost LogMX column).

It is just an artefact due to this specific execution of LogMX though: one can
check that reading this file again, but this time as a whole (instead of live) does
not show duplicated traces anymore; indeed these traces were actually stored
by Ceylan-Traces in the *.traces file only once.

Lost LogMX Settings

LogMX will write its configuration files (notably logmx . properties) when shut-
down. So before modifying any of these files, ensure first that no LogMX in-
stance is still running (otherwise one’s changes will be overwritten).

Java Error When Launching LogMX

One may check that Java is installed and available from the PATH, that it is a
sufficiently recent one (e.g. Java 11; more recent ones like Java 21 will work of
course) and that it is at least a JRE (a complete JDK will be fine as well) and
a full (non-headless®) version thereof.

One may use check with:

80therwise the following link error may be reported: Exception in thread "main"
java.lang.ExceptionInInitializerError... Caused by: java.awt.HeadlessException
due to a lacking libawt_xawt.so. Then just replace your headless version with a full one.

19

$ type java
java is /usr/bin/java

$ java -version

openjdk version "21" 2023-09-19

OpenJDK Runtime Environment (build 21+35)

OpenJDK 64-Bit Server VM (build 21+35, mixed mode, sharing)

Arch users may also install a relevant Java with pacman -Sy jre-openjdk
and run archlinux-java status to check which version shall be used (then
possibly archlinux-java set java-21-openjdk to select it).

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be

reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this document.

Please React!
If you have information more detailed or more recent than those presented in

this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word

Have fun with Ceylan-Traces!

N\
\ \\‘\‘

N e |
N\

\c\
-
=N

20

https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-Traces/issues

	Table of Contents
	Overview
	Trace Severities
	Trace Content
	Trace Emission
	From member methods
	From constructors
	Trace Categorisation
	Activation / Desactivation
	Switching from Basic Console Traces
	The Traceable Interface

	Trace Ordering
	Trace Output Generation
	Trace Format Type
	Trace Rotation

	Trace Supervision & Browsing
	Trace Implementation
	General Mode of Operation
	Trace Emitters
	Timestamps
	Multiple Inheritance

	Lowering the Trace-Induced Overhead
	LogMX-related Hints
	Internal Trace Format

	Supported Platforms
	Licence
	Current Stable Version & Download
	Using Cutting-Edge GIT
	Using OTP-Related Conventions
	Using Rebar3
	Build-time Conventions
	Compile-time Conventions
	Runtime Conventions

	Testing Traces
	Troubleshooting
	Lost Traces
	Duplicated Traces
	Lost LogMX Settings

	Troubleshooting
	Lost Traces
	Duplicated Traces
	Lost LogMX Settings
	Java Error When Launching LogMX

	Support
	Please React!
	Ending Word

